nanni

Total Synthesis of (−)‑N‑Methylwelwitindolinone C Isothiocyanate Based on a Pd-Catalyzed Tandem Enolate Coupling Strategy

Keita Komine, Yusuke Nomura, Jun Ishihara, and Susumi Hatakeyama*

Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan

S Supporting Information

[AB](#page-2-0)STRACT: [The highly st](#page-2-0)ereocontrolled total synthesis of (−)-N-methylwelwitindolinone C isothiocyanate is described, which features the expeditious construction of a bicyclo^[4.3.1]decane ring system by a palladium-catalyzed tandem enolate allylation/arylation reaction.

oore and co-workers reported the isolation of a series of fascinating welwitindolinone alkaloids from the bluegreen algae Hapalosiphon wetwitschii, Westiella intricata, Fischerella muscicola, and Fischerella major (Figure 1).¹ These alkaloids

Figure 1. Representative welwitindolinone alkaloids.

exhibit significant biological activities represented by the ability to reverse P-glycoprotein-mediated multidrug resistance in human cancer cells. $²$ Most of the welwitindolinones possess a densely</sup> functionalized oxindole-fused bicyclo[4.3.1]decane ring system containing [tw](#page-3-0)o contiguous quaternary centers. The structural challenges coupled with promising pharmacological properties have made these alkaloids attractive targets for synthesis.^{3,4} Thus, a number of elegant methodologies to assemble a [4.3.1] bicyclic core have been developed from many research gro[ups](#page-3-0)^{3c,5} but only the Rawal group⁶ and the Garg group⁷ have succeeded in the total syntheses of [4.3.1] bicyclic welwitindo[lino](#page-3-0)nes 1−6. Recently, the [Ma](#page-3-0)rtin group⁸ also re[po](#page-3-0)rted the formal syntheses of 2−6 though in racemic forms. We now report the novel total synthesis of (−)-N[-m](#page-3-0)ethylwelwitindolinone C isothiocyanate (2).

Scheme 1. Retrosynthesis

For the synthesis of the welwitindolinone alkaloids, we envisioned diketo nitrile 7 as a common precursor (Scheme 1). We expected that compound 7 would be derived from 8 by stereoselective methylation at the C12 center based on Martin's protocol.⁸ To expeditiously access 8, we envisioned a palladiumcatalyzed tandem enolate allylation/arylation sequence from 9, whic[h](#page-3-0) had not previously been examined for the assembly of a [4.3.1] bicyclic core.3c,5[−]⁸ Considering steric repulsions during the sequential cyclizations, we selected the relatively less bulky cyanoketone functi[onality](#page-3-0)⁹ and 13S configuration¹⁰ for 9. To stereoselectively synthesize 9, we considered an approach from 11 of S configuration v[ia](#page-3-0) a Mannich-like react[ion](#page-3-0) with 12 followed by epimerization at C15 under kinetic protonation

Received: July 8, 2015 Published: July 27, 2015 conditions and nucleophilic opening of γ -lactone 10 with the anion of acetonitrile.

Our synthesis thus began with the preparation of 11 with high enantiopurity (Scheme 2). Commercially available carboxylic acid

13 was first converted to aldehyde 14 by a one-pot procedure 11 involving formation of the acid chloride, Rosenmund reduction, and Wittig reaction. Without purification, 14 was then subject[ed](#page-3-0) to NaBH4 reduction followed by silylation to give 11 with 98% ee in 68% overall yield from 13. Compound 11 was coupled with the known indole derivative 12, prepared from 4-bromo-3-acetyl-1-methyl-1H-indole, 8 in the presence of TMSOTf under the conditions reported by Martin et al. $8,12$ to deliver a 93:7 mixture of 15 and 10 in 75[%](#page-3-0) yield. Upon treatment of this mixture with KHMDS followed by aqueous NH₄Cl at -78 °C, the kinetic protonation of the resulting enolate took place to give a 10:90 mixture of 15^{13} and 10^{13} which was chromatographically separated. Lactone 10 thus obtained was then converted to 9 by a four-step seq[uen](#page-3-0)ce invo[lvi](#page-3-0)ng reaction with lithiated acetonitrile, silylation, selective removal of the TBDPS group under basic conditions, 14 and acetylation in good overall yield. Similarly, compound 16 was also prepared from 15.

Wit[h t](#page-3-0)he desired precursor 9 in hand, we then investigated the crucial tandem cyclization (Table 1). Since the palladiumcatalyzed conditions reported by Rawal's group⁶ and Martin's group⁸ did not promote the desired tandem cyclization, we focused on Ve[r](#page-3-0)kade's protocol¹⁵ developed for the arylation of eth[y](#page-3-0)l cyanoacetate with aryl bromides. We first examined the reaction employing three palladi[um](#page-3-0) sources at 30 mol % loading together with *i*-Bu-PAP (1.2 equiv) and *t*-BuOK (2 equiv) at 90 °C in toluene. As a result, when $Pd_2(dba)_3$ was used as a catalyst, the tandem allylation/arylation took place within 1 h to produce the desired cyclization products $8a$ and $8b^{16}$ in a ratio of 2:1 in 72% yield (entry 3). Both $Pd(Ph_3P)_4$ and $Pd_2(dba)_3$ $Pd_2(dba)_3$ $Pd_2(dba)_3$ ·CHCl₃ catalyzed

Table 1. Pd-Catalyzed Tandem Cyclizations

this tandem cyclization less effectively (entries 1 and 2). It was found that decreasing the amounts of $Pd_2(dba)_3$ and *i*-Bu-PAP to 0.2 equiv and 0.8 equiv improved the total yield of 8a and 8b to 84%, although the diastereoselectivity did not change. Furthermore, the combination of $Pd_2(dba)$ ₃ and Xphos was also found to effectively catalyze the tandem process (entry 5). Surprisingly, slow addition of 9 to a mixture of $Pd_2(dba)$ ₃, Xphos, and t-BuOK in boiling toluene provided a 2:1 mixture of 8a and 8b in quantitative yield (entry 6). It is important to note that compound 16, the 15-epimer of 9, did not produce any cyclization products under the $Pd_2(dba)$ ₃/*i*-Bu-PAP- or $Pd_2(dba)$ ₃/XPhos-catalyzed conditions as we expected.¹⁰

2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl.

We also examined the tandem cyclization of 17 having a 12 methyl gro[u](#page-3-0)p¹⁷ under the Pd₂(dba)₃/i-Bu-PAP-catalyzed conditions (Scheme 3). However, the reaction afforded a complex

Scheme 3. Cyclization of Compound 17

mixture from which bicyclic compound 18 was isolated as a 2:1 mixture in only 2% yield.

To understand the above-mentioned tandem process, we performed the experiments shown in Scheme 4. The $Pd_2(dba)$ ₃/ i-Bu-PAP-catalyzed reaction of 9 at 70 °C for 30 min allowed us to isolate intermediates 19, a 1.3:1 m[ixture, and](#page-2-0) 20. These intermediates were then exposed to the conditions listed in entry 3 of Table 1. In the reaction of 19, the major isomer and minor isomer produced 8a and 8b, respectively. On the other hand, the

reaction of 20 proceeded with high diastereoselectivity to produce a 10:1 mixture of 8a and 8b. These results suggest that the tandem process would occur preferentially via an enolate allylation (path A) rather than an enolate arylation (path B).

Having successfully constructed the bicyclic framework, we then pursued the synthesis of N-methylwelwitindolinone C isothiocyanate (2) from the diastereoisomeric mixture of 8a and 8b (Scheme 5). This mixture 8ab was first converted to ketone 21 by desilylation followed by Dess−Martin oxidation. The next methylation step turned out to be problematic.¹⁸ Ater considerable experimentation, we eventually found conditions where the methyl group was introduced stereo- and regi[ose](#page-3-0)lectively in acceptable yield. Thus, after deprotonation of 21 with t-BuOLi in DMF at −40 °C, the resulting dienolate was methylated with methyl iodide to give our envisaged key intermediate 7^{13} as a single diastereoisomer. To assemble the vinyl chloride functionality in 7, we examined Garg's protocol^{α} involving a t[ri](#page-3-0)flation, stannylation, and chlorination. However, when triflate 22 was exposed to the stannylation conditio[ns](#page-3-0) using $(Me_3Sn)_2$, $Pd(Ph_3P)_4$, and LiCl in 1,4-dioxane at 90 °C, none of the desired product was obtained. It is worth noting that, upon heating 22 in the presence of $[Cp*Ru(MeCN)_3]$ OTf and LiCl in 1,3dimethyl-2-imidazolidinone at 75 °C according to Hayashi's procedure,¹⁹ pentacyclic compound 23^{20} was obtained in 94% yield. The production of 23 can be explained by the mechanism proposed [by](#page-3-0) Rawal et al., 21 which pr[oc](#page-3-0)eeds through a Cope rearrangement followed by C−C bond formation between the resulting α -cyanoketone [an](#page-3-0)d dienylruthenium species. We eventually found that triflate 24,¹³ prepared by NaBH₄ reduction of 22, cleanly underwent chlorination under Garg's conditions^{7a} to give chloride 25 in good yiel[d. U](#page-3-0)pon DIBAL-H reduction and Dess−Martin oxidation, 25 afforded keto aldehyde 26. Final[ly,](#page-3-0) following the procedure reported by Rawal et al., $6c$ the total synthesis of $(-)$ -N-methylwelwitindolinone C isothiocyanate (2) was achieved via selective oxidation of the i[ndo](#page-3-0)le ring with magnesium monoperoxyphthalate (MMPP) giving oxindole $27^{{6c,13}}$ and installation of the isothiocyanate functionality by an aldoxime rearrangement. The synthetic 2 exhibited spectral pr[oper](#page-3-0)ties identical in all respects to those reported.^{1a,6c} Since compound 2 has already been converted to N-methylwelwitindolinones 3−5, 6c,7b the synthesis of 2 constitutes [the f](#page-3-0)ormal syntheses of these alkaloids.

Scheme 4. Reaction Pathways Scheme 5. Synthesis of (−)-N-Methylwelwitindolinone C Isothiocyanate

In summary, we have completed the total synthesis of $(-)$ -Nmethylwelwitindolinone C isothiocyanate (2) in 6% overall yield (24 steps) from commercially available 13. The present work illustrates the prowess of the palladium-catalyzed tandem cyclization to enable expeditious access to a bicyclic skeleton of welwitindolinone alkaloids. The methodology developed is of general value in approaches to other [4.3.1] bicyclic welwitindolinones.

ASSOCIATED CONTENT

S Supporting Information

Experimental procedures, spectroscopic data, $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra, and X-ray crystallographic data (CIF). The Supporting Information is available free of charge via the Internet at The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.5b01952.

Experimental procedures, spectroscopic data, and ¹H and 13C NMR spectra (PDF)

X-ray data of the alcohol derived from 8a (CIF) X-ray data of the alcohol derived from 8b (CIF) X-ray data of compound 23 (CIF)

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: susumi@nagasaki-u.ac.jp.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We acknowledge financial support from the Grant-in-Aid (25253002) from JSPS and the Grant-in-Aid for Scientific Research on Innovative Areas "Advanced Molecular Transformations by Organocatalysis" (No. 2304) (24105526) from MEXT.

■ REFERENCES

(1) (a) Stratmann, K.; Moore, R. E.; Bonjouklian, R.; Deeter, J. B.; Patterson, G. M. L.; Shaffer, S.; Smith, C. D.; Smitka, T. A. J. Am. Chem. Soc. 1994, 116, 9935−9942. (b) Jimenez, J. I.; Huber, U.; Moore, R. E.; Patterson, G. M. L. J. Nat. Prod. 1999, 62, 569−572.

(2) (a) Smith, C. D.; Zilfou, J. T.; Stratmann, K.; Patterson, G. M. L.; Moore, R. E. Mol. Pharmacol. 1995, 47, 241−247. (b) Zhang, X.; Smith, C. D. Mol. Pharmacol. 1996, 49, 288−294.

(3) For reviews, see: (a) Avendaño, C.; Menéndez, J. C. Curr. Org. Synth. 2004, 1, 65−82. (b) Brown, L. E.; Konopelski, J. P. Org. Prep. Proced. Int. 2008, 40, 411−445. (c) Huters, A. D.; Styduhar, E. D.; Garg, N. K. Angew. Chem., Int. Ed. 2012, 51, 3758−3765. (d) Wood, J. L. Nat. Chem. 2012, 4, 341−343.

(4) Total syntheses of welwitindolinone A isonitrile, a cyclobutanecontaining alkaloid: (a) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2005, 127, 15394−15396. (b) Reisman, S. E.; Ready, J. M.; Hasuoka, A.; Smith, C. J.; Wood, J. L. J. Am. Chem. Soc. 2006, 128, 1448−1449. (5) Cleary, L.; Pitzen, J.; Brailsford, J. A.; Shea, K. J. Org. Lett. 2014, 16, 4460−4463 and references therein.

(6) (a) Bhat, V.; Allan, K. M.; Rawal, V. H. J. Am. Chem. Soc. 2011, 133, 5798−5801. (b) Bhat, V.; Rawal, V. H. Chem. Commun. 2011, 47, 9705−9707. (c) Allan, K. M.; Kobayashi, K.; Rawal, V. H. J. Am. Chem. Soc. 2012, 134, 1392−1395.

(7) (a) Huters, A. D.; Quasdorf, K. W.; Styduhar, E. D.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 15797–15799. (b) Quasdorf, K. W.; Huters, A. D.; Lodewyk, M. W.; Tantillo, D. J.; Garg, N. K. J. Am. Chem. Soc. 2012, 134, 1396−1399. (c) Styduhar, E. D.; Huters, A. D.; Weires, N. A.; Garg, N. K. Angew. Chem., Int. Ed. 2013, 52, 12422− 12425. (d) Weires, N. A.; Styduhar, E. D.; Baker, E. L.; Garg, N. K. J. Am. Chem. Soc. 2014, 136, 14710−14713.

(8) (a) Fu, T.-h.; McElroy, W. T.; Shamszad, M.; Martin, S. F. Org. Lett. 2012, 14, 3834−3837. (b) Fu, T.-h.; McElroy, W. T.; Shamszad, M.; Heidebrecht, R. W., Jr.; Gulledge, B.; Martin, S. F. Tetrahedron 2013, 69, 5588−5603.

(9) It was assumed that a β -keto ester functionality would cause severe steric interactions during the tandem cyclization process due to the bulky bent ester structure.

(10) It was assumed that the 13R-isomer of 9 would experience severe steric interactions between the TBSO group and indole residue in any transition state, unlike 13S-isomer 9.

(11) Cooke, R. C.; van Leeuwen, K. A.; Capone, D. L.; Gawel, R.;

Elsey, G. M.; Sefton, M. A. J. Agric. Food Chem. 2009, 57, 2462−2467. (12) Fu, T.-h.; Bonaparte, A.; Martin, S. F. Tetrahedron Lett. 2009, 50, 3253−3257.

(13) The stereostructure was determined by the NOESY spectra.

(14) Hatakeyama, S.; Irie, H.; Shintani, T.; Noguchi, Y.; Yamada, H.; Nishizawa, M. Tetrahedron 1994, 50, 13369−13376.

(15) You, J.; Verkade, J. G. J. Org. Chem. 2003, 68, 8003−8007.

(16) The stereostructures were determined by X-ray crystallographic analysis of the corresponding alcohols derived from 8a and 8b. The crystallographic data (CCDC 1403797 and CCDC 1403798) can be obtained free of charge from the Cambridge Crystallographic Data centre via www.ccdc.cam.ac.uk/data_request/cif.

(17) See the Supporting Information for the preparation of 17.

(18) For example, methylation of 21 under Martin's conditions (NaHDMS, MeI, DMF, −40 °C) produced 7 (22%) and the corresponding α , α' -dimethylated compound (12%).

(19) Imazaki, Y.; Shirakawa, E.; Ueno, R.; Hayashi, T. J. Am. Chem. Soc. 2012, 134, 14760−14763.

(20) The stereostructure was determined by X-ray crystallographic analysis. The crystallographic data (CCDC 1403796) can be obtained free of charge from the Cambridge Crystallographic Data centre via www.ccdc.cam.ac.uk/data_request/cif.

(21) Bhat, V.; MacKay, J. A.; Rawal, V. H. Tetrahedron 2011, 67, 10097−10104.